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ABSTRACT 

  In this paper, the influence of a densely packed porous lining on the flow of a Rivlin-

Ericksen conducting viscoelastic fluid through a parallel plate channel subjected to a traverse 

magnetic field is considered. The behavior of the velocity of the fluid in clean fluid region as 

well as the slip velocity discussed at the interface for small and large thickness of the porous 

bed.  The velocity, Shear stress and mass flux are discussed  for various values of the 

parameters and are represented graphically. The results are obtained here are more general.  

Keywords: Run – up flow, Visco – elasticity, Start – up flow, Newtonian fluid, Viscosity. 

Mathematical Subject classification: 58 D 30. 

1. INTRODUCTION: 

 Non-Newtonian fluid flows are encountered in a wide range of engineering 

applications, chemical technology and petroleum industry as well as geophysical fluid 

dynamics [1,2,3]. The study of these non-Newtonian fluids has great importance in 

lubrication, extrusion of plastics, flow in journal bearings; flow is a shock absorber etc. [4,5]. 

The increase in applications urged Scientists and Engineers to provide mathematical models 

for non-Newtonian fluids. The non-linearity between stress and deformation rate for phase 

fluids makes it, in general, impossible to obtain a simple mathematical model as in the case of 

Newtonian fluids. Viscoelastic fluids which possess certain degree of elasticity in addition to 

viscosity are categorized as second order fluids. 
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 Rivlin and Ericksen [6] have proposed a mathematical model for viscoelastic fluids 

which predicts normal stress affect although maintain Newtonian viscosity. The constitutive 

equation governing the Rivlin and Ericksen [6] fluid is given by  

 

T = -PI+ 1 A + 2 B + 3 A
2

,   

Where I = || 
ij ||, 

ij  is the kronecker delta. 

 A = || aij ||, aij = ½[ui,j + uj, i] in the deformation tension 

  B = || bij ||, bij = jmimijji

m

ij VVaab ,,,, 2 in the viscoelastic tensor 

Ai,j , aj, i are the acceleration gradients 

 Vm, i , Vm, j are the velocity gradients. 

1 , 2  and 3  are material constants called the coefficient of viscosity, visco-

elasticity and cross-viscosity respectively, which are considered to be constant in this paper. 

  

Initially the flow is due to a prescribed pressure gradient with boundaries at rest and at 

time t > 0, the pressure gradient is withdrawn the upper plate suddenly moves with a uniform 

velocity while the lower plate continues to be at rest. Researchers in this field are initiated for 

the first time by Kazakia and Rivlin[7], in which they investigated run-up flow in an 

incompressible isotropic viscoelastic fluid contained between two infinite rigid parallel 

plates. Rivlin [8] also discussed run-up and spin-up flow in a viscoelastic fluid between two 

infinite parallel plates containing Maxwell fluid initially at rest. They have studied the fluid 

motion resulting from sudden velocities given to the plates and subsequently held constant. 

 

 The fluid flow is through a composite system consisting of two zones. The unsteady 

governing equations are solved as initial value problem. Zone -1 consisting of Rivlin-

Ericksen fluid in the non-porous region bounded above by an impermeable boundary plane. 

The flow in zone - 2 consists of flow through porous region bounded below by the rigid 

plane. The flow in the non-porous region is governed by Navier-stokes equation. The porous 

region although densly packed allows slip through the interface. Hence, we choose Darcy-

Lapwood model to govern the flow through porous bed. At the interface the slip velocity 

satisfies the Beavers- Joseph Condition. Also at the interface the continuity of the velocity is 

imposed so that the velocity the fluid in the clean fluid region at the interface equal to the slip 

velocity. The velocity in both the clean fluid a porous Zone the shear stress and the mass flux 

have been evaluated and their behaviour is discussed computationally for variations in the 

governing parameters. 

 

2.   FORMULATION AND SOLUTION OF THE PROBLEM: 

 

The equation governing initial flow in clean fluid region zone – 1 in non-dimensional 

form is 
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 PRRuM
dy

ud
 2

2

2

       (1) 

The corresponding non-dimensional boundary condition is  

 u = 0 at y = 1                   (2) 

The initial axial velocity in the porous bed (Zone – 2) is given by 

 
122

12

1 
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RPD
u p        (3) 

Where    M
2
 = 

U

hHe



 2

0

2

            (the Hartmann number)   

  R = 


 hU
                    (the Reynolds number) 

  D
-2

 = 
K

h2

                      (the inverse Darcy Parameter) 

               = 


 eff

                               (the ratio of the viscosities) 

At 0t  the momentum equations governing the flow in non-dimensional form in zone – 

1 is 
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In zone – 2 
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     (5) 

where S = 
2

1

h


     (is the viscoelastic parameter) 

The boundary and the interfacial conditions in non-dimensional form are  

 u = 1 at y = 1                   (6) 

u = uB; )(1

PB uuD
y

u




    at y = s1     (7) 

Solving (1) subjected to the conditions (2) the initial flow in the non-porous region is 

given by 
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where C1 be an arbitrary constant to be determined. 

We now solve (4) and (5) subjected to the conditions (6) and (7) using Laplace transforms 

method. 

Let puu ,  and Bu  be the transformed velocities of puu,  and 
B

u respectively. 

The equations governing the transformed velocities, making use of the initial velocity 

expression reduces to  

 
7

A)RSinh(M
8

Ay)RCosh(M
3

Ay))(1RSinh(M
3

A

SRs1

1
u2β

2dy

u2d






   (9) 

where 2  = 
SRs1

Ms 2




  

A1, A2 etc. are constants given in the appendix 
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      (10) 

The boundary and the interfacial conditions in the transformed form are  

s
u

1
  at y = 1      (11) 

Buu   at y = 1s      (12) 

1

1

sy

pB

dy

ud
Duu


















      (13) 

Solving (9) subjected to the condition (11) we obtain 

 βSinh

'sRS)C(2
u 1
 . 
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Where '
1C  is an arbitrary constant to be determined. 
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Bu  is obtained from (12) and ( 13) using (10) and (15) 
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Taking inverse Laplace Transformations of (10), (14) and (16) we obtain  
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Where  1 , 2  etc. and A9, A10 etc. A23 are constants. 

The shear stress are calculated using the formula       
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 We also determine the mass flux by the formula 
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3. DISCUSSIONS OF THE RESULTS: 

 

 The main aim of this investigation is to discuss the influence of a densely packed 

porous lining on the flow of a Rivlin–Ericksen conducting viscoelastic fluid through a 

parallel plate channel subjected to a traverse magnetic field. The behaviour of the velocity of 

the fluid in clean fluid region as well as the slip velocity at the interface for small and large 

thickness of the porous bed has been computationally analyzed for variations in the 

governing parameters. Fig. [1-4] corresponds to the fluid velocity in the clean fluid region 

when the thickness of the bed is small and figs [5-8] corresponds to its behavior when the 

thickness is fairly large. We notice from fig (1) in general when M > 5, u reduces the lower 

half till y 6.0  and later gradually rises to attain the prescribed value on the upper plate. 

When 5M , the similar behavior is noticed till y 6.0  although a reversal flow is observed 

is the upper half with u steeply raising to its prescribed value on the upper boundary. An 

increasing M enhances the fluid velocity in the lower region while reducing in the upper half 

fig (1). From fig. (2) we observe that an increase in through smaller values R (<10) 

accelerates the fluid flow while for R>10 the velocity reduces in the flow field. A reversal 

flow is observed in the flow field except in the vicinity in the upper plate for higher value of 

R (=25). Lower the permeability of the porous bed greater the velocity of the fluid in the non-

porous region, although for sufficiently high inverse Darcy parameter D
-1

 order 3 x 10
5
 a 

slight retardation is observed in the fluid. Fig. (4) corresponds to the variation of u with S the 

viscoelastic parameter we observe that the magnitude of fluid enhances every where with 

increase in S except in the vicinity of the upper plate. 

 

 When the thickness of the bed is sufficiently large a reversal movement is observed in 

general with flow taking place in the direction of the imposed pressure gradient. We also 

notice that the magnitude of u enhances with increase in M and R, except perhaps near the 

upper boundary fig [5-8]. A similar behaviour is noticed with increase in D
-1

 (<2 x 10
5
) and S 

(<2). When D
-1

 is 2 x 10
5
 or S (=2) a slight depreciation is noticed in the axial velocity fig. 

[7,8]. The slip velocity uB has been evaluated and tabulated in table-1 for different variations 

in the governing parameters in both the cases of small and large thickness of the bed. We 

notice that  uB enhances with any one of M S, R, or D
-1

, fixing the remaining parameters. 

 



International Journal of Mathematical Sciences, Technology and Humanities 57 (2012) 616 – 634 

D.Malleswari
1
, D.Raju

2
 and A.LeelaRatnam

3
 

 

626 

 

 The shear stress on the upper plate and mass flux have been evaluated for variations 

in the parameters and tabulated in tables 2 and 4. In either case of small and large thickness 

of porous bed we find that the shear stress enhance on the plates with M, R, S for fixed values 

of the other parameters while reduce with increase in D
-1

. Hence lesser the permeability of 

the bed higher the stresses on the plate. The mass flux reduces with increase in M, R, S or D
-1

 

irrespective of the thickness of the porous bed. 

 

 

 Fig. 1. Variation of u with M in the clean fluid region (0.3≤y≤1) 

P = 1, t =1, D-1 = 104, R = 10, S = 2.5,  = 0.5,   = 1.2,   = 0.3, s1 = 0.3 

       

Fig.2. Variation of u with R 

P = 1, t =1, D
-1

 = 10
4
, M = 5, S = 2.5,  = 0.5,   = 1.2,   = 0.3, s1 = 0.3 
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Fig.3. Variation of u with D-1 

P = 1, t =1, R = 10, M = 5, S = 2.5,   = 0.5,   = 1.2,   = 0.3, s1 = 0.3 

 

Fig.4. Variation of u with S 

P = 1, t =1, R = 10, M = 5, D-1 = 10
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   Fig. 5    Variation of u with M  (0.5≤y≤1) 

P = 1, t =1, D
-1

 = 10
4
, R = 10, S = 2.5,   = 0.5,   = 1.2,   = 0.3, s1 = 0.5 

    

Fig. 6    Variation of u with R 

P = 1, t =1, D
-1

 = 10
4
, M = 5, S = 2.5,   = 0.5,   = 1.2,   = 0.3, s1 = 0.5 
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Fig. 7   Variation of u with D-1 

P = 1, t =1, R =10, M = 5, S = 2.5,   = 0.5,   = 1.2,   = 0.3, s1 = 0.5 

 

Fig. 8    Variation of u with S 

P = 1, t =1, R =10, M = 5, D
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TABLE – 1   

SLIP VELOCITY  uB 

S1 I II III IV V VI VII VIII IX X XI XII 

0.3 0.83835 0.876998 0.884333 0.627566 0.746105 0.0783026 0.71921 0.84119 0.8519 0.597547 0.74751 0.8004540 

0.5 
-

0.64152 

-

0.863553 

-

0.867589 

-

0.089508 
-0.50423 -0.752 

-

0.234986 

-

0.33257 

-

0.41592 

-

0.611466 

-

0.759402 
-0.735836 

 

 I II III IV V VI VII VIII IX X XI XII 

M 5 8 10 5 5 5 5 5 5 5 5 5 

R 10 10 10 5 15 20 10 10 10 10 10 10 

S 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5 1 1.5 

D
-1 10

4 
10

4
 10

4
 10

4
 10

4
 10

4
 10

3
 10

5
 2 x 10

5
 10

4
 10

4
 10

4
 

TABLE – 2   

SHEAR STRESS AT Y = 1 

S1 I II III IV V VI VII VIII IX X XI XII 

0.

3 

3.5819

4 

5.9934

4 

6.0349

9 

-

7.3650

1 

5.4844

7 

3.8607

4 

2.3691

5 

3.3646

1 

2.8677

7 

4.7346

6 

4.8643

4 
4.5383 

0.

5 

-

120.42

5 

-

4.1310

9 

-

2.9880

3 

-

94.812

3 

-

52.831

3 

-

58.680

6 

-

262.80

8 

- 

133.91 

-

166.86

8 

-

15.920

4 

-

35.295

5 

-

59.181

6 

 

 I II III IV V VI VII VIII IX X XI XII 

M 5 8 10 5 5 5 5 5 5 5 5 5 

R 10 10 10 5 15 20 10 10 10 10 10 10 

S 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5 1 1.5 

D
-1 10

4 
10

4
 10

4
 10

4
 10

4
 10

4
 10

3
 10

5
 2 x 10

5
 10

4
 10

4
 10
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TABLE – 3  

 MASS FLUX 

S1 I II III IV V VI VII VIII IX X XI XII 

0.3 0.52320 0.51627 0.45123 0.43628 0.40412 0.3216 0.31427 0.28612 0.26602 0.24321 0.2262 0.19630 

0.5 0.26667 0.26430 0.25281 0.24084 0.24132 0.22513 0.16727 0.26325 0.15227 0.15165 0.15240 0.15302 

 

 I II III IV V VI VII VIII IX X XI XII 

M 5 8 10 5 5 5 5 5 5 5 5 5 

R 10 10 10 5 15 20 10 10 10 10 10 10 

S 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5 1 1.5 

D
-1 10

4 
10

4
 10

4
 10

4
 10

4
 10

4
 10

3
 10

5
 2 x 10

5
 10

4
 10

4
 10

4
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APPENDIX 
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